Перейти к основному контенту
Office

Использование пакета анализа

Примечание: Мы стараемся как можно оперативнее обеспечивать вас актуальными справочными материалами на вашем языке. Эта страница переведена автоматически, поэтому ее текст может содержать неточности и грамматические ошибки. Для нас важно, чтобы эта статья была вам полезна. Просим вас уделить пару секунд и сообщить, помогла ли она вам, с помощью кнопок внизу страницы. Для удобства также приводим ссылку на оригинал (на английском языке).

Если вам нужно разработать сложные статистические или инженерные анализы, вы можете сэкономить этапы и время с помощью пакета анализа. Вы предоставляете данные и параметры для каждого анализа, и в этом средстве используются соответствующие статистические или инженерные функции для вычисления и отображения результатов в выходной таблице. Некоторые инструменты создают диаграммы в дополнение к выходным таблицам.

Функции анализа данных можно применять только на одном листе. Если анализ данных проводится в группе, состоящей из нескольких листов, то результаты будут выведены на первом листе, на остальных листах будут выведены пустые диапазоны, содержащие только форматы. Чтобы провести анализ данных на всех листах, повторите процедуру для каждого листа в отдельности.

Ниже описаны инструменты, включенные в пакет анализа. Для доступа к ним нажмите кнопкуАнализ данных в группе Анализ на вкладке Данные. Если команда Анализ данных недоступна, необходимо загрузить надстройку "Пакет анализа".

  1. Откройте вкладку Файл, нажмите кнопку Параметры и выберите категорию Надстройки.

    Если вы используете Excel 2007, нажмите кнопку Microsoft Office Изображение кнопки Office , а затем — Параметры Excel .

  2. В раскрывающемся списке Управление выберите пункт Надстройки Excel и нажмите кнопку Перейти.

    Если вы используете Excel для Mac, в строке меню откройте вкладку Средства и в раскрывающемся списке выберите пункт Надстройки для Excel.

  3. В диалоговом окне Надстройки установите флажок Пакет анализа, а затем нажмите кнопку ОК.

    • Если Пакет анализа отсутствует в списке поля Доступные надстройки, нажмите кнопку Обзор, чтобы выполнить поиск.

    • Если выводится сообщение о том, что пакет анализа не установлен на компьютере, нажмите кнопку Да, чтобы установить его.

Примечание: Чтобы включить функцию Visual Basic для приложений (VBA) для пакета анализа, вы можете загрузить надстройку "пакет анализа — VBA" таким же образом, как и при загрузке пакета анализа. В диалоговом окне Доступные надстройки установите флажок Пакет анализа — VBA .

Существует несколько видов дисперсионного анализа. Нужный вариант выбирается с учетом числа факторов и имеющихся выборок из генеральной совокупности.

Однофакторный дисперсионный анализ

Это средство выполняет простой анализ дисперсии для данных двух или более образцов. Анализ — это проверка гипотезы о том, что каждый образец выводится из того же основного распределения вероятности, что и для альтернативной гипотезы, для которой базовые распределения вероятностей не одинаковы. Если есть только два примера, вы можете использовать функцию на листе T.Проверка. В более чем двух выборках нет удобной обобщения с T.И может быть вызвана модель одноФакторного дисперсионный проверки.

Двухфакторный дисперсионный анализ с повторениями

Этот инструмент анализа применяется, если данные можно систематизировать по двум параметрам. Например, в эксперименте по измерению высоты растений последние обрабатывали удобрениями от различных изготовителей (например, A, B, C) и содержали при различной температуре (например, низкой и высокой). Таким образом, для каждой из 6 возможных пар условий {удобрение, температура}, имеется одинаковый набор наблюдений за ростом растений. С помощью этого дисперсионного анализа можно проверить следующие гипотезы:

  • Извлечены ли данные о росте растений для различных марок удобрений из одной генеральной совокупности. Температура в этом анализе не учитывается.

  • Извлечены ли данные о росте растений для различных уровней температуры из одной генеральной совокупности. Марка удобрения в этом анализе не учитывается.

Извлечены ли шесть выборок, представляющих все пары значений {удобрение, температура}, используемые для оценки влияния различных марок удобрений (для первого пункта в списке) и уровней температуры (для второго пункта в списке), из одной генеральной совокупности. Альтернативная гипотеза предполагает, что влияние конкретных пар {удобрение, температура} превышает влияние отдельно удобрения и отдельно температуры.

Определение входного диапазона для дисперсионного анализа

Двухфакторный дисперсионный анализ без повторений

Этот инструмент анализа применяется, если данные можно систематизировать по двум параметрам, как в случае двухфакторного дисперсионного анализа с повторениями. Однако в таком анализе предполагается, что для каждой пары параметров есть только одно измерение (например, для каждой пары параметров {удобрение, температура} из предыдущего примера).

На листе КОРРЕЛ и Пирсон рассчитываются коэффициент корреляции между двумя переменными измерения, если измерения для каждой переменной отображаются для каждого из N субъектов. (Отсутствие наблюдения для какой-либо из тем приводит к тому, что эта тема пропускается в анализе.) Средство анализа корреляции особенно полезно, если для N тем используется более двух переменных измерения. Она предоставляет выходную таблицу, матрицу корреляции, которая показывает значение КОРРЕЛ (или Пирсона), примененное к каждой возможной паре переменных измерения.

Коэффициент корреляции, например Ковариация, — это мера экстента, в котором одновременно различаются две переменные измерения. В отличие от ковариации коэффициент корреляции масштабируется таким образом, чтобы его значение не зависело от единиц, в которых выражаются две переменные измерения. (Например, если две переменные измерения являются весом и высотой, значение коэффициента корреляции не меняется, если вес конвертируется из килограммов в килограммы). Значение любого коэффициента корреляции должно находиться в диапазоне от-1 до + 1 включительно.

Корреляционный анализ дает возможность установить, ассоциированы ли наборы данных по величине, т. е. большие значения из одного набора данных связаны с большими значениями другого набора (положительная корреляция) или наоборот, малые значения одного набора связаны с большими значениями другого (отрицательная корреляция), или данные двух диапазонов никак не связаны (нулевая корреляция).

Вы можете использовать инструменты корреляции и ковариации в одном и том же параметре, если у вас есть N различных переменных измерения, которые потратили на набор отдельных пользователей. Средства корреляции и ковариации предоставляют выходную таблицу, матрицу, которая показывает коэффициент корреляции или ковариацию соответственно между каждой парой переменных измерения. Разница заключается в том, что коэффициенты корреляции масштабируются в зависимости от-1 и + 1 включительно. Соответствующие ковариации не масштабируются. Как коэффициент корреляции, так и ковариация — это величины экстентов, в которых две переменные различны друг от друга.

Инструмент Ковариация вычисляет значение функции коВАРИАЦИя на листе . P для каждой пары переменных измерения. (Прямое использование коВАРИАЦИи. Функция P вместо средства Ковариация является разумной альтернативой, если есть только две переменные измерения, т. е. N = 2.) Запись по диагонали в выходной таблице инструмента ковариации в строке i — это Ковариация переменной измерения i-ой. Это всего лишь дисперсия Генеральной совокупности для этой переменной, вычисленная функцией на листе var.P.

Ковариационный анализ дает возможность установить, ассоциированы ли наборы данных по величине, то есть большие значения из одного набора данных связаны с большими значениями другого набора (положительная ковариация) или наоборот, малые значения одного набора связаны с большими значениями другого (отрицательная ковариация), или данные двух диапазонов никак не связаны (ковариация близка к нулю).

Инструмент анализа "Описательная статистика" применяется для создания одномерного статистического отчета, содержащего информацию о центральной тенденции и изменчивости входных данных.

Инструмент анализа "Экспоненциальное сглаживание" применяется для предсказания значения на основе прогноза для предыдущего периода, скорректированного с учетом погрешностей в этом прогнозе. При анализе используется константа сглаживания a, величина которой определяет степень влияния на прогнозы погрешностей в предыдущем прогнозе.

Примечание: Для константы сглаживания наиболее подходящими являются значения от 0,2 до 0,3. Эти значения показывают, что ошибка текущего прогноза установлена на уровне от 20 до 30 процентов ошибки предыдущего прогноза. Более высокие значения константы ускоряют отклик, но могут привести к непредсказуемым выбросам. Низкие значения константы могут привести к большим промежуткам между предсказанными значениями.

Двухвыборочный F-тест применяется для сравнения дисперсий двух генеральных совокупностей.

Например, можно использовать F-тест по выборкам результатов заплыва для каждой из двух команд. Это средство предоставляет результаты сравнения нулевой гипотезы о том, что эти две выборки взяты из распределения с равными дисперсиями, с гипотезой, предполагающей, что дисперсии различны в базовом распределении.

С помощью этого инструмента вычисляется значение f F-статистики (или F-коэффициент). Значение f, близкое к 1, показывает, что дисперсии генеральной совокупности равны. В таблице результатов, если f < 1, "P(F <= f) одностороннее" дает возможность наблюдения значения F-статистики меньшего f при равных дисперсиях генеральной совокупности и F критическом одностороннем выдает критическое значение меньше 1 для выбранного уровня значимости "Альфа". Если f > 1, "P(F <= f) одностороннее" дает возможность наблюдения значения F-статистики большего f при равных дисперсиях генеральной совокупности и F критическом одностороннем дает критическое значение больше 1 для "Альфа".

Инструмент "Анализ Фурье" применяется для решения задач в линейных системах и анализа периодических данных на основе метода быстрого преобразования Фурье (БПФ). Этот инструмент поддерживает также обратные преобразования, при этом инвертирование преобразованных данных возвращает исходные данные.

Входной и выходной диапазоны для анализа Фурье

Инструмент "Гистограмма" применяется для вычисления выборочных и интегральных частот попадания данных в указанные интервалы значений. При этом рассчитываются числа попаданий для заданного диапазона ячеек.

Например, можно получить распределение успеваемости по шкале оценок в группе из 20 студентов. Таблица гистограммы состоит из границ шкалы оценок и групп студентов, уровень успеваемости которых находится между самой нижней границей и текущей границей. Наиболее часто встречающийся уровень является модой диапазона данных.

Совет: В Excel 2016 теперь можно создавать гистограммы и диаграммы Парето.

Инструмент анализа "Скользящее среднее" применяется для расчета значений в прогнозируемом периоде на основе среднего значения переменной для указанного числа предшествующих периодов. Скользящее среднее, в отличие от простого среднего для всей выборки, содержит сведения о тенденциях изменения данных. Этот метод может использоваться для прогноза сбыта, запасов и других тенденций. Расчет прогнозируемых значений выполняется по следующей формуле:

Формула расчета скользящего среднего

где

  • N — число предшествующих периодов, входящих в скользящее среднее;

  • A j — фактическое значение в момент времени j;

  • F j — прогнозируемое значение в момент времени j.

Инструмент "Генерация случайных чисел" применяется для заполнения диапазона случайными числами, извлеченными из одного или нескольких распределений. С помощью этой процедуры можно моделировать объекты, имеющие случайную природу, по известному распределению вероятностей. Например, можно использовать нормальное распределение для моделирования совокупности данных по росту людей или использовать распределение Бернулли для двух вероятных исходов, чтобы описать совокупность результатов бросания монеты.

Инструмент «ранжирование и персентиль» формирует таблицу, содержащую порядковый и процентный ранги для каждого значения в наборе данных. Вы можете проанализировать относительные значения в наборе данных. Это средство использует функции ранжирования на листе . EQ иПРОЦЕНТРАНГ. INC. Если вы хотите учитывать привязанные значения, используйте ранг. EQ , который обрабатывает привязанные значения в соответствии с одинаковым рангом или использует ранг.Функция AVG , возвращающая среднее значение ранга для привязанных значений.

Инструмент анализа "Регрессия" применяется для подбора графика для набора наблюдений с помощью метода наименьших квадратов. Регрессия используется для анализа воздействия на отдельную зависимую переменную значений одной или нескольких независимых переменных. Например, на спортивные качества атлета влияют несколько факторов, включая возраст, рост и вес. Можно вычислить степень влияния каждого из этих трех факторов по результатам выступления спортсмена, а затем использовать полученные данные для предсказания выступления другого спортсмена.

Средство регрессия использует функцию листа ЛИНЕЙН.

Инструмент анализа "Выборка" создает выборку из генеральной совокупности, рассматривая входной диапазон как генеральную совокупность. Если совокупность слишком велика для обработки или построения диаграммы, можно использовать представительную выборку. Кроме того, если предполагается периодичность входных данных, то можно создать выборку, содержащую значения только из отдельной части цикла. Например, если входной диапазон содержит данные для квартальных продаж, создание выборки с периодом 4 разместит в выходном диапазоне значения продаж из одного и того же квартала.

Двухвыборочный t-тест проверяет равенство средних значений генеральной совокупности по каждой выборке. Три вида этого теста допускают следующие условия: равные дисперсии генерального распределения, дисперсии генеральной совокупности не равны, а также представление двух выборок до и после наблюдения по одному и тому же субъекту.

Для всех трех средств, перечисленных ниже, значение t вычисляется и отображается как "t-статистика" в выводимой таблице. В зависимости от данных это значение t может быть отрицательным или неотрицательным. Если предположить, что средние генеральной совокупности равны, при t < 0 "P(T <= t) одностороннее" дает вероятность того, что наблюдаемое значение t-статистики будет более отрицательным, чем t. При t >=0 "P(T <= t) одностороннее" делает возможным наблюдение значения t-статистики, которое будет более положительным, чем t. "t критическое одностороннее" дает пороговое значение, так что вероятность наблюдения значения t-статистики большего или равного "t критическое одностороннее" равно "Альфа".

"P(T <= t) двустороннее" дает вероятность наблюдения значения t-статистики, по абсолютному значению большего, чем t. "P критическое двустороннее" выдает пороговое значение, так что значение вероятности наблюдения значения t- статистики, по абсолютному значению большего, чем "P критическое двустороннее", равно "Альфа".

Парный двухвыборочный t-тест для средних

Парный тест используется, когда имеется естественная парность наблюдений в выборках, например, когда генеральная совокупность тестируется дважды — до и после эксперимента. Этот инструмент анализа применяется для проверки гипотезы о различии средних для двух выборок данных. В нем не предполагается равенство дисперсий генеральных совокупностей, из которых выбраны данные.

Примечание: Одним из результатов теста является совокупная дисперсия (совокупная мера распределения данных вокруг среднего значения), вычисляемая по следующей формуле:

Формула расчета совокупной дисперсии

Двухвыборочный t-тест с одинаковыми дисперсиями

Это средство анализа выполняет двухвыборочный t-тест учащегося. В этой форме t-тест предполагается, что два набора данных получены из распространения с одинаковыми дисперсиями. Она называется гомоскедастическийм t-тестом. Вы можете использовать этот t-тест, чтобы определить, могут ли два примера быть получены из распределений с одинаковым заполнением.

Двухвыборочный t-тест с различными дисперсиями

Это средство анализа выполняет двухвыборочный t-тест учащегося. В этой форме t-тест предполагается, что два набора данных получены из распространения с неравными дисперсиями. Она называется гетероскедастическийм t-тестом. Как и в предыдущем случае с одинаковыми дисперсиями, вы можете использовать этот t-тест, чтобы определить, должны ли два примера поступать из распределения с одинаковым заполнением. Используйте этот тест, если в двух примерах есть отдельные темы. Используйте парный тест, описанный в приведенном ниже примере, когда есть один набор тем, а в двух образцах — измерения для каждой темы до и после обработки.

Для определения тестовой величины t используется следующая формула.

Формула расчета значения t

Следующая формула используется для вычисления степеней свободы, DF. Так как результат вычисления обычно не является целым числом, значение df округляется до ближайшего целого числа, чтобы получить критическое значение из t-таблицы. Функция листа Excel — T.Тест использует вычисляемое значение DF без округля, так как можно вычислить значение для T.Проверка с нецелочисленной DF. Из-за разных подходов к определению степеней свободы результаты в T.Тестирование и это средство t-тест будет отличаться в случае неРавной вариации.

Формула аппроксимации числа степеней свободы

Двухвыборочный z-тест для средних — это Двухвыборочный z-тест для средних и известных отклонений. Это средство используется для проверки гипотезы на то, что в двух или двусторонних вариантах есть различия между двумя единицами заполнения. Если вариативность неизвестна, то функция листа Z.Вместо этого следует использовать проверку .

При использовании этого инструмента следует внимательно просматривать результат. "P(Z <= z) одностороннее" на самом деле есть P(Z >= ABS(z)), вероятность z-значения, удаленного от 0 в том же направлении, что и наблюдаемое z-значение при одинаковых средних значениях генеральной совокупности. "P(Z <= z) двустороннее" на самом деле есть P(Z >= ABS(z) или Z <= -ABS(z)), вероятность z-значения, удаленного от 0 в том же направлении, что и наблюдаемое z-значение при одинаковых средних значениях генеральной совокупности. Двусторонний результат является односторонним результатом, умноженным на 2. Инструмент "z-тест" можно также применять для гипотезы об определенном ненулевом значении разницы между двумя средними генеральных совокупностей. Например, этот тест можно использовать для определения разницы выступлений на соревнованиях двух автомобилей разных марок.

Дополнительные сведения

Вы всегда можете задать вопрос специалисту Excel Tech Community, попросить помощи в сообществе Answers community, а также предложить новую функцию или улучшение на веб-сайте Excel User Voice.

См. также

Создание гистограммы в Excel 2016

Создание диаграммы Парето в Excel 2016

Загрузка пакета анализа в Excel

ИНЖЕНЕРные функции (Справка)

СТАТИСТИЧЕСКИе функции (Справка)

Общие сведения о формулах в Excel

Рекомендации, позволяющие избежать появления неработающих формул

Поиск ошибок в формулах

Сочетания клавиш и горячие клавиши в Excel

Функции Excel (по алфавиту)

Функции Excel (по категориям)

Совершенствование навыков работы с Office
Перейти к обучению
Первоочередный доступ к новым возможностям
Присоединиться к программе предварительной оценки Office

Были ли сведения полезными?

Спасибо за ваш отзыв!

Благодарим за отзыв! Возможно, будет полезно связать вас с одним из наших специалистов службы поддержки Office.

×