분석 도구를 사용하여 복잡한 데이터 분석 수행

참고:  사용자 언어로 가능한 한 빨리 가장 최신의 도움말 콘텐츠를 제공하고자 합니다. 이 페이지는 자동화를 통해 번역되었으며 문법 오류나 부정확한 설명을 포함할 수 있습니다. 이 목적은 콘텐츠가 사용자에게 유용하다는 것입니다. 이 페이지 하단의 정보가 도움이 되었다면 알려주세요. 쉽게 참조할 수 있는 영어 문서 가 여기 있습니다.

복잡한 통계 또는 공학 분석을 개발하려는 경우 분석 도구를 사용하여 많은 시간과 단계를 절약할 수 있습니다. 각 분석에 데이터와 매개 변수를 제공하기만 하면 이 도구에서 통계 또는 공학용 매크로 함수를 사용하여 결과를 계산하고 출력 테이블에 표시합니다. 일부 도구에서는 출력 테이블에 차트를 만들기도 합니다.

데이터 분석 함수는 한 번에 한 워크시트에서만 사용할 수 있습니다. 그룹화된 워크시트에서 데이터 분석을 수행하면 첫 번째 워크시트에 결과가 표시되고 나머지 워크시트에는 서식이 지정된 빈 표가 나타납니다. 나머지 워크시트에서 데이터 분석을 수행하려면 워크시트마다 분석 도구를 다시 계산해야 합니다.

분석 도구에는 다음 섹션에서 설명하는 도구들이 포함되어 있습니다. 이러한 도구를 사용하려면 데이터 탭의 분석 그룹에서 데이터 분석을 클릭합니다. 데이터 분석 명령을 사용할 수 없는 경우에는 분석 도구 추가 기능 프로그램을 로드해야 합니다.

  1. 파일 탭을 클릭하고 옵션을 클릭한 다음 추가 기능 범주를 클릭합니다.

    Excel 2007을 사용 중인 경우 Office 단추 이미지 Microsoft Office 단추 클릭 한 다음 Excel 옵션 을 클릭합니다

  2. 관리 상자에서 Excel 추가 기능을 선택한 다음 이동을 클릭합니다.

    Mac용 Excel에서는 파일 메뉴에서 도구 > Excel 추가 기능으로 이동합니다.

  3. 추가 기능 상자에서 분석 도구 확인란을 선택하고 확인을 클릭합니다.

    • 이때 사용 가능한 추가 기능 상자의 목록에 분석 도구가 없으면 찾아보기를 클릭하여 찾습니다.

    • 분석 도구가 현재 컴퓨터에 설치되어 있지 않다는 메시지가 나타나면 를 클릭하여 설치합니다.

참고: 분석 도구용 VBA(Visual Basic for Application) 함수를 포함하려면 분석 도구를 로드할 때와 같은 방법으로 분석 도구 - VBA 추가 기능을 로드할 수 있습니다. 사용 가능한 추가 기능 상자에서 분석 도구 - VBA 확인란을 선택합니다.

분산 분석 도구는 다양한 유형의 분산 분석을 제공합니다. 검사할 모집단의 표본 수와 인자 수에 따라 다른 도구를 사용해야 합니다.

분산 분석: 일원 배치법

이 도구는 둘 이상의 표본에 대해 단순 분산 분석을 수행합니다. 이 분석을 통해 일부 표본에서 기본 확률 분포가 다르다는 가설에 반해 모든 표본이 같은 기본 확률 분포로 추출되었다는 가설을 검증할 수 있습니다. 표본이 두 개뿐이면 워크시트 함수 T.TEST를 사용할 수 있습니다. 표본이 세 개 이상인 경우에는 T.TEST를 통해 간편하게 일반화할 수 없으므로 대신 일원 배치법 분산 분석 모델을 사용해야 합니다.

분산 분석: 반복 있는 이원 배치법

이 분석 도구는 데이터를 두 가지 다른 차원에 따라 분류할 수 있는 경우에 유용합니다. 예를 들어 식물의 높이를 측정하는 실험에서 각 식물에는 A, B, C와 같은 서로 다른 상표의 비료를 사용할 수 있고 저온 및 고온과 같이 서로 다른 배양 온도를 유지할 수 있습니다. 가능한 여섯 가지 {비료, 온도} 쌍에 대해 각각 동일한 횟수로 식물의 높이를 측정합니다. 여기에서 이 분산 분석 도구를 사용하면 다음을 검정할 수 있습니다.

  • 서로 다른 상표의 비료를 사용한 식물의 높이가 동일한 기본 모집단에서 추출되었는지 여부. 이 분석에서는 온도가 무시됩니다.

  • 서로 다른 온도에서 배양된 식물의 높이가 동일한 기본 모집단에서 추출되었는지 여부. 이 분석에서는 비료 상표가 무시됩니다.

1번 항목에서 확인된 비료 상표 차이에 의한 영향과 2번 항목에서 확인된 온도 차에 의한 영향을 고려했을 때 모든 {비료, 온도} 값 쌍을 나타내는 여섯 개의 표본이 동일한 모집단에서 추출되었는지 여부. 특정 {비료, 온도} 쌍으로 인한 효과가 비료나 온도의 차이만으로 인한 효과를 뛰어 넘는다는 대체 가설을 세울 수도 있습니다.

분산 분석 도구의 입력 범위 설정

분산 분석: 반복 없는 이원 배치법

이 분석 도구도 반복 있는 이원 배치법과 같이 데이터를 두 가지 다른 차원에 따라 분류할 수 있는 경우에 유용합니다. 그러나 이 도구에서는 이전 예제의 {비료, 온도} 쌍과 같은 각 쌍을 한 번만 관측한다고 가정합니다.

CORRELPEARSON 워크시트 함수는 N개의 대상 각각에 대해 측정이 수행된 경우 두 측정 변수 사이의 상관 계수를 계산합니다. 측정이 누락된 대상은 분석에서 무시됩니다. 상관 관계 분석 도구는 N개의 대상에 각각 측정 변수가 세 개 이상일 때 특히 유용합니다. 분석 결과 테이블에는 가능한 각 측정 변수 쌍에 적용된 CORREL 또는 PEARSON 값을 보여 주는 상관 행렬이 출력됩니다.

상관 계수는 공 분산과 마찬가지로 두 측정 변수가 "함께 변화"하는 정도를 재는 척도이지만 상관 계수는 공 분산과 달리 두 측정 변수의 표시 단위와 무관하게 결정됩니다. 예를 들어 두 측정 변수가 무게와 높이인 경우 무게를 파운드에서 킬로그램으로 변환해도 상관 계수 값은 변하지 않습니다. 상관 계수 값은 -1 이상 +1 이하여야 합니다.

상관 관계 분석 도구를 사용하면 각 측정 변수 쌍을 조사하여 두 측정 변수가 상관적으로 변화하는지 판단할 수 있습니다. 즉, 한 변수의 값이 증가하면 다른 변수의 값도 증가하는 양의 상관 관계가 있는지, 한 변수의 값이 감소하면 다른 변수의 값이 증가하는 음의 상관 관계가 있는지 또는 두 변수의 값이 서로 관련되지 않는 0에 가까운 상관 관계가 있는지 여부를 판단할 수 있습니다.

개별 대상 집합에서 N개의 서로 다른 측정 변수를 관측하는 경우 동일한 설정에서 상관 관계 도구와 공 분산 도구를 사용할 수 있습니다. 상관 관계 도구와 공 분산 도구에서는 각 측정 변수 쌍 사이의 상관 계수와 공 분산을 보여 주는 행렬을 테이블에 출력합니다. 상관 계수는 -1 이상 +1 이하의 범위에 오도록 조정되지만 공 분산은 범위가 조정되지 않습니다. 상관 계수와 공 분산은 모두 두 변수가 "함께 변화"하는 정도를 재는 척도입니다.

공 분산 도구에서는 각 측정 변수 쌍에 대해 COVARIANCE.P 워크시트 함수 값을 계산합니다. 측정 변수가 두 개인 경우(N=2) 공 분산 도구 대신 COVARIANCE.P 함수를 직접 사용하는 것이 좋습니다. 공 분산 도구의 출력 테이블에서 대각선 항목(i행, i열)은 i번째 측정 변수의 자체 공 분산이므로 VAR.P 워크시트 함수로 계산한 해당 변수의 모집단 분산에 불과합니다.

공 분산 도구를 사용하면 각 측정 변수 쌍을 조사하여 두 측정 변수가 상관적으로 변화하는지 판단할 수 있습니다. 즉, 한 변수의 값이 증가하면 다른 변수의 값도 증가하는 양의 공 분산인지, 한 변수의 값이 감소하면 다른 변수의 값이 증가하는 음의 공 분산인지 또는 두 변수의 값이 서로 관련되지 않는 0에 가까운 공 분산인지 여부를 판단할 수 있습니다.

기술 통계법 분석 도구는 입력 범위의 데이터에 대한 일변량 통계 보고서를 만들어 데이터의 중심 추세와 변동성에 대한 정보를 제공합니다.

지수 평활법 분석 도구는 이전 예측값을 기준으로 이전 예측의 오차를 수정한 새 예측값을 구합니다. 이 도구에서는 이전 예측의 오차가 예측값에 반영되는 정도를 나타내는 평활 상수 a를 사용합니다.

참고: 평활 상수로는 0.2에서 0.3 사이의 값이 적당합니다. 이 값은 현재 예측값이 이전 예측의 오차를 고려하여 20%에서 30%까지 조정됨을 나타냅니다. 상수값이 크면 반영 속도는 빠르지만 예측값이 불규칙할 수 있으며 상수값이 작으면 예측값에서 오차가 오래 지속될 수 있습니다.

분산에 대한 두 표본 F-검정 분석 도구는 두 표본 F-검정을 수행하여 두 모집단 분산을 비교합니다.

예를 들어 두 수영 팀의 각 수영 기록에서 시간 표본에 대해 F-검정 도구를 사용할 수 있습니다. 이 도구는 두 분산의 기본 분포가 일치하지 않는다는 반대 가설에 대해 두 표본이 동일한 분산을 갖는 분포에서 추출되었다는 영가설 검정 결과를 제공합니다.

이 도구는 F-통계(F-비율)의 f 값을 계산합니다. f 값이 1에 가까우면 기본 모집단 분산이 동일하다는 증거입니다. 출력 테이블에서 f가 1보다 작은 경우 "P(F <= f) one-tail"은 모집단 분산이 동일할 때 F 통계량 값이 f 미만으로 관측될 확률을 구하고 "F Critical one-tail"은 선택된 유의 수준 Alpha에 대해 1 미만의 임계값을 구합니다. f가 1보다 큰 경우 "P(F <= f) one-tail"은 모집단 분산이 동일할 때 F 통계량 값이 f보다 크게 관측될 확률을 구하고 "F Critical one-tail"은 Alpha에 대해 1보다 큰 임계값을 구합니다.

푸리에 분석 도구는 FFT(고속 푸리에 변환) 기법을 통해 데이터를 변환하는 방법으로 선형 시스템의 문제를 해결하고 주기적인 데이터를 분석합니다. 또한 변환된 데이터의 역이 원래 데이터가 되는 역변환 기능도 지원합니다.

푸리에 분석의 입력과 출력 범위

히스토그램 분석 도구는 데이터 및 데이터 계급 구간 셀 범위에서 개별 및 누적 빈도를 계산합니다. 이 도구는 데이터 집합에서 값이 나오는 횟수에 대한 데이터를 생성합니다.

예를 들어 학생이 20명인 반에서 학점별 점수 분포를 확인할 수 있습니다. 히스토그램 테이블에서는 학점별 경계 및 최소 경계와 현재 경계 사이에 있는 점수의 개수를 보여 줍니다. 가장 많이 발생하는 단일 점수는 데이터의 최빈값입니다.

팁: Excel 2016에서 이제 히스토그램 또는 파레토 차트를 만들 수 있습니다.

이동 평균 분석 도구는 지정된 지난 기간 동안 변수의 평균값을 기준으로 특정 기간의 값을 예측합니다. 이동 평균은 모든 누적 데이터의 단순 평균에서는 알 수 없는 추세 정보를 제공합니다. 이 도구를 사용하여 판매량, 재고량, 기타 추세를 예측할 수 있습니다. 각 예상 값은 다음 수식으로 계산됩니다.

이동 평균을 계산하는 수식

설명:

  • N은 이동 평균에 포함할 이전 기간의 수입니다.

  • A jj 시점의 실제 값입니다.

  • F jj 시점의 실제 값입니다.

난수 생성 분석 도구는 여러 분포 중 하나에서 추출한 독립 난수로 범위를 채웁니다. 이 과정을 통해 모집단 구성원의 특징을 확률 분포로 나타낼 수 있습니다. 예를 들어 개인의 신장에 대한 모집단의 특징을 정규 분포로 나타내거나, 동전 던지기 결과에 대한 모집단의 특징을 두 가지 가능성에 대한 베르누이 분포로 나타낼 수 있습니다.

순위와 백분위수 분석 도구는 데이터 집합에 있는 각 값의 순위와 백분위를 보여 주는 테이블을 만듭니다. 이 도구를 통해 데이터 집합에서 값의 상대적 위치를 분석할 수 있습니다. 이 도구에서는 RANK.EQPERCENTRANK.INC 워크시트 함수를 사용합니다. 동률 값을 고려하려면 동률 값을 같은 순위로 취급하는 RANK.EQ 함수를 사용하거나, 동률 값의 평균 순위를 반환하는 RANK.AVG 함수를 사용하세요.

회귀 분석 도구는 "최소 자승법"을 사용하여 관측값 집합을 통과하는 선을 근접시키는 방법으로 선형 회귀 분석을 수행합니다. 이 도구를 통해 하나 이상의 독립 변수 값이 단일 종속 변수에 주는 영향을 분석할 수 있습니다. 예를 들어 나이, 신장 및 체중 등의 인자가 육상 선수의 기록에 주는 영향을 분석할 수 있습니다. 기록 데이터 집합을 바탕으로 기록 측정에서 세 인자에 각각 기여도를 배분한 다음 결과를 사용하여 아직 테스트하지 않은 선수의 기록을 예측할 수 있습니다.

회귀 분석 도구에서는 LINEST 워크시트 함수를 사용합니다.

표본 추출 분석 도구는 입력 범위를 모집단으로 하여 모집단에서 표본을 추출합니다. 모집단이 너무 커서 데이터를 처리할 수 없거나 차트를 만들 수 없는 경우 모집단을 대표하는 표본을 사용할 수 있습니다. 또한 입력 데이터에서 주기성이 발견되는 경우 하나의 주기에서 특정 부분의 값만 포함된 표본을 만들 수 있습니다. 예를 들어 입력 범위에 분기별 매출액이 들어 있는 경우 주기율을 4로 지정하여 표본을 추출하면 같은 분기의 값이 출력 범위에 나타납니다.

두 표본 t-검정 분석 도구는 각 표본의 모집단 평균이 서로 같은지 여부를 검사합니다. 세 가지 도구에서는 서로 다른 가정을 사용합니다. 첫 번째는 모집단 분산이 동일하다는 가정, 두 번째는 모집단 분산이 동일하지 않다는 가정, 세 번째는 두 표본이 동일한 대상에 대한 처리 전과 처리 후 관측 결과를 나타낸다는 가정입니다.

아래의 세 가지 도구 모두에서 t-통계값인 t가 계산되어 출력 테이블에 "t-통계"로 표시됩니다. 이 t 값은 데이터에 따라 음수나 양수 또는 0이 될 수 있습니다. 기본 모집단 평균이 동일하다는 가정 하에 t가 0보다 작으면 "P(T <= t) one-tail"은 t보다 작은 t 통계값이 관측될 확률을 구하고, t가 0보다 크거나 같으면 "P(T <= t) one-tail"은 t보다 큰 t 통계값이 관측될 확률을 구합니다. "t Critical one-tail"은 컷오프 값을 구하므로 "t Critical one-tail"보다 크거나 같은 t 통계값이 관측될 확률은 Alpha가 됩니다.

"P(T <= t) two-tail"은 t보다 절대값이 큰 t 통계값이 관측될 확률을 구합니다. "P Critical two-tail"은 컷오프 값을 구하므로 "P Critical two-tail"보다 절대값이 큰 t 통계값이 관측될 확률은 Alpha가 됩니다.

t-검정: 두 표본 쌍의 평균

표본 그룹이 실험 전과 실험 후 두 번 검사될 때와 같이 표본 관측이 자연스럽게 쌍을 이루는 경우 쌍체 검정을 사용할 수 있습니다.  이 분석 도구와 수식에서는 쌍을 이루는 두 표본 스튜던트 t-검정을 수행하여 처리 전과 처리 후의 관측 결과가 모집단 평균이 동일한 분포에서 나온 것인지 확인할 수 있습니다. 이 형태의 t-검정에서는 두 모집단의 분산이 동일하다는 가정을 하지 않습니다.

참고: 이 도구에서는 데이터가 평균 주위로 흩어진 정도를 누적하여 측정하는 공동 분산을 산출합니다. 공동 분산은 다음 수식에 따라 도출됩니다.

공동 분산을 계산하는 수식

t-Test: 등분산 가정 두 표본

이 분석 도구에서는 두 표본 스튜던트 t-검정을 수행합니다. 이 형태의 t-검정에서는 두 데이터 집합이 분산이 같은 분포에서 나온 것으로 가정하며 이를 등분산적 t-검정이라고 합니다. 이 t-검정을 사용하면 두 표본이 모집단 평균이 같은 분포에서 추출되었는지 여부를 확인할 수 있습니다.

t-Test: 등분산 가정 두 표본

이 분석 도구에서는 두 표본 스튜던트 t-검정을 수행합니다. 이 형태의 t-검정에서는 두 데이터 집합이 분산이 다른 분포에서 나온 것으로 가정하며 이를 이분산적 t-검정이라고 합니다. 이전의 등분산 t-검정과 마찬가지로 이 t-검정을 사용하여 두 표본이 모집단 평균이 같은 분포에서 추출되었는지 여부를 확인할 수 있습니다. 두 표본에 서로 다른 대상이 있는 경우에는 이 검정을 사용하고, 대상 집합이 하나이고 두 표본이 처리 전과 후에 대상을 측정한 결과를 나타내는 경우에는 다음 예제와 같이 쌍체 검정을 사용하세요.

다음은 통계값 t를 구하는 수식입니다.

t 값을 계산하는 수식

다음 수식은 자유도 df를 계산할 때 사용합니다. 계산 결과는 일반적으로 정수가 아니므로 df 값은 t 테이블에서 임계값을 구하기 위해 가장 가까운 정수로 반올림됩니다. Excel 워크시트 함수 T.TEST에서는 정수가 아닌 df를 사용해도 T.TEST 값을 계산할 수 있으므로 반올림되지 않고 계산된 df 값을 사용합니다. 자유도를 계산하는 방식에 이러한 차이점이 있으므로 이분산 검정의 경우 T.TEST 결과와 이 t-검정 도구의 결과가 다를 수 있습니다.

자유도의 근사값을 계산하는 수식

z-검정: 두 표본의 평균 분석 도구는 분산이 알려진 평균에 대한 두 표본 z-검정을 수행합니다. 이 도구는 단측 또는 양측 대체 가설에 반해 두 모집단 평균이 같다는 영가설을 검정하는 데 사용됩니다. 분산을 알 수 없는 경우에는 워크시트 함수 Z.TEST를 대신 사용해야 합니다.

z-검정 도구를 사용하면서 출력 결과를 주의하여 해석해야 합니다. "P(Z <= z) one-tail"은 사실상 P(Z >= ABS(z))로서, 모집단 평균이 같을 때 z 값이 관측된 z 값보다 같은 방향으로 0에서 더 멀 확률입니다. "P(Z <= z) two-tail"은 사실상 P(Z >= ABS(z) 또는 Z <= -ABS(z))로서, 모집단 평균이 같을 때 z 값이 관측된 z 값보다 두 방향에서 0에서 더 멀 확률입니다. 양측 검정 결과는 단측 검정 결과에 2를 곱한 값입니다. 두 모집단 평균 사이에 0이 아닌 특정 값 만큼의 차이가 있다는 영가설을 검정할 때도 z-검정 도구를 사용할 수 있습니다. 예를 들어 이 검정을 사용하여 두 자동차 모델의 성능상 차이를 확인할 수 있습니다.

추가 지원

Excel 기술 커뮤니티의 전문가에게 질문하고, Answers 커뮤니티에서 지원을 받고, Excel 사용자 의견에서 새로운 기능이나 개선 사항을 제안해 보세요.

참고 항목

Excel 2016에서 히스토그램 만들기

Excel 2016에서 파레토 차트 만들기

분석 도구 및 해 찾기 추가 기능 설치 / 활성화 하려면 비디오를 시청합니다

공학 함수 (참조)

통계 함수 (참조)

Excel의 수식 개요

수식 손상을 방지하는 방법

수식의 오류 찾기 및 수정

Excel 바로 가기 키 및 기능 키

Excel 함수(사전순)

Excel 함수(범주별)

Office 기술 확장
교육 살펴보기
새로운 기능 우선 가져오기
Office Insider 참여

이 정보가 유용한가요?

의견 주셔서 감사합니다!

피드백을 주셔서 감사합니다. Office 지원 에이전트와 연락하는 것이 도움이 될 것 같습니다.

×