分析ツールを使用して統計学的および工学的分析を行う

複雑な統計学的分析や工学的分析を行わなければならない場合も、分析ツールを使用すれば、すばやく簡単に結果を得ることができます。分析に必要なデータとパラメーターを指定すると、各ツールが統計用または工学用の適切なマクロ関数を使ってデータを分析し、計算結果を出力テーブルに表示します。出力テーブルだけでなく、グラフを出力するツールもあります。

データ分析関数は、一度に 1 つのワークシートでのみ使用できます。グループ化されたワークシートでデータ分析を実行すると、分析結果は 1 枚目のワークシートに表示され、残りのワークシートには空のテーブルが表示されます。残りのワークシートでデータ分析を実行するには、ワークシートごとに分析ツールで再計算します。

分析ツールには、以降のセクションで説明するツールが含まれます。これらのツールにアクセスするには、[データ] タブの [分析] グループで [データ分析] をクリックします。[データ分析] が表示されない場合は、分析ツール アドイン プログラムを読み込む必要があります。

  1. [ファイル] タブをクリックします。[オプション] をクリックし、[アドイン] カテゴリをクリックします。

    Excel 2007 の場合は、Office ボタン Office ボタンの画像 をクリックし、[Excel のオプション] をクリックします。

  2. [管理] ボックスの一覧の [Excel アドイン] をクリックし、[設定] をクリックします。

    Excel for Mac を使用している場合は、ファイル メニューで [ツール]、[Excel アドイン] の順に選択します。

  3. [アドイン] ボックスで、[分析ツール] チェック ボックスをオンにし、[OK] をクリックします。

    • [有効なアドイン] ボックスの一覧に [分析ツール] が表示されない場合は、[参照] をクリックしてアドイン ファイルを見つけます。

    • 分析ツールが現在コンピューターにインストールされていないというメッセージが表示されたら、[はい] をクリックして分析ツールをインストールします。

注: 分析ツールで Visual Basic for Application (VBA) 関数を使用するには、分析ツールを読み込むときと同じ方法で "分析ツール - VBA" アドインを読み込みます。[使用できるアドイン] ボックスの一覧の [分析ツール - VBA] チェック ボックスをオンにします。

分散分析ツールを使用すると、さまざまな種類の分散分析を行うことができます。使用するツールは、検定する母集団の要因数と標本数によって決まります。

分散分析: 一元配置

このツールは、複数の標本のデータについて分散の簡単な分析を行います。この分析を行うと、すべての標本に関して基になる確率分布が同じではないという対立仮説に対して同じ確率分布からそれぞれの標本が得られるという仮説を検定することができます。標本が 2 つのみの場合は、T.TEST ワークシート関数を使用できます。3 つ以上の標本については T.TEST 関数は利用できませんが、代わりに一元配置分散分析モデルを使うことができます。

分散分析: 繰り返しのある二元配置

この分析ツールは、データを 2 つの異なる次元に従って分類できる場合に役立ちます。たとえば植物の高さを計測する実験では、その植物に A、B、C など異なる肥料を与え、低温、高温などの異なる温度環境に置く場合があります。{肥料、温度} の 6 種類の可能な組み合わせのそれぞれについて、植物の高さを同じ回数観察します。この分散分析ツールを使うと、以下の検定を行うことができます。

  • 異なる種類の肥料を与えた場合の植物の高さが、同じ母集団から得られた標本であると見なせるかどうか。この分析では温度環境を無視します。

  • 異なる温度環境に置いた場合の植物の高さが、同じ母集団から得られた標本であると見なせるかどうか。この分析では肥料の種類を無視します。

箇条書き項目 1 での肥料の種類と箇条書き項目 2 での温度環境の違いによる影響を考慮に入れて、{肥料、温度} 値のすべての組み合わせを代表する 6 つの標本が同じ母集団から得られたものであると見なせるかどうかを検定します。この場合の対立仮説は、肥料の種類単独または温度環境単独における違いに対して、{肥料、温度} の特定の組み合わせによる影響があるということです。

分散分析ツール用に設定された入力範囲

分散分析: 繰り返しのない二元配置

この分析ツールは、繰り返しのある二元配置の場合と同じように、データが 2 つの異なる次元で分類される場合に役立ちます。ただしこのツールでは、1 つの組み合わせ (たとえば前の例では、{肥料、温度} の組み合わせの 1 つ) について、1 回の観察のみを行うと仮定します。

CORREL ワークシート関数と PEARSON ワークシート関数は共に、N 個の対象物それぞれに対して各変数を測定する場合に、2 つの測定変数間の相関係数を計算します (いずれかの対象物に対する観察が行われないと、分析時にその対象物が無視されます)。相関分析ツールは、N 個の対象物それぞれに対して 3 つ以上の測定変数がある場合に特に役立ちます。この分析を行うと、測定変数の可能な組み合わせそれぞれに対して CORREL (または PEARSON) 関数を適用した結果の値を示した相関マトリックスが、出力テーブルとして得られます。

共分散と同じように、相関係数は 2 つの測定変数が一緒に変化する程度を示します。共分散とは異なり、相関係数は 2 つの測定変数を表す単位とは関係なくその値の基準が決められます (たとえば、2 つの測定変数が重量と高さの場合、重量がポンドからキログラムに変更されても相関係数の値は変わりません)。すべての相関係数の値は、-1 から +1 までの範囲に収まります。

相関分析ツールを使うと、測定変数の組み合わせそれぞれについて 2 つの測定変数が一緒に変化する傾向があるかどうかを調べることができます。一方の変数の大きな値がもう一方の変数の大きな値と関連する傾向があるか (正の相関)、一方の変数の小さな値がもう一方の変数の大きな値と関連する傾向があるか (負の相関)、両方の変数の値が関連しない傾向があるか (0 に近い相関) などを調べることができます。

一連の個別の対象物に対して測定される N 個の異なる測定変数がある場合、相関分析ツールと共分散分析ツールは同じ設定で使うことができます。相関分析ツールと共分散分析ツールではそれぞれ、測定変数の各組み合わせ間の相関係数または共分散を示すマトリックスが、出力テーブルとして得られます。相関係数が -1 から +1 までの範囲に収まるのに対し、 対応する共分散はこの範囲に収まらない点が異なります。相関係数と共分散は共に、2 つの変数が一緒に変化する程度を示します。

共分散分析ツールは、測定変数のそれぞれの組み合わせについて COVARIANCE.P ワークシート関数の値を計算します (N=2、つまり 2 つの測定変数のみの場合は、共分散分析ツールではなく COVARIANCE.P 関数を直接使用する方が適しています)。共分散分析ツールの出力テーブルで対角線上の i 行 i 列の値は、i 番目の測定変数のそれ自身との共分散を表します。これは、VAR.P ワークシート関数で計算される、母集団におけるその変数の分散の値と同じです。

共分散分析ツールを使うと、測定変数の組み合わせそれぞれについて 2 つの測定変数が一緒に変化する傾向があるかどうかを調べることができます。一方の変数の大きな値がもう一方の変数の大きな値と関連する傾向があるか (正の共分散)、一方の変数の小さな値がもう一方の変数の大きな値と関連する傾向があるか (負の共分散)、両方の変数の値が関連しない傾向があるか (0 に近い共分散) などを調べることができます。

基本統計量分析ツールは、入力範囲のデータを対象に、一変量による基本統計量を調べ、対象となるデータの主要な傾向と変動に関する情報を出力します。

指数平滑分析ツールは、前回の観測値と予測値との誤差を調整して、前回の予測値に基づいてデータを予測します。平滑化定数 a を使って計算します。この定数は、前回の予測値の誤差に対する予測値の反応の強さを決める値です。

注: 平滑化定数に指定する値は 0.2 ~ 0.3 が適しています。この範囲の値を使うと、現在の予測が前回の予測の 20 ~ 30% の誤差に調整されます。定数に大きい値を指定すると、予測値の計算に必要な時間は短くなりますが、予測の誤差は大きくなります。定数に小さい値を指定すると、予測値の計算に必要な時間が長くなります。

F 検定: 2 標本を使った分散の検定分析ツールは、2 つの標本を使った F 検定を行って、2 つの母集団の分散を比較します。

たとえば、2 つのチームそれぞれの水泳大会でのタイムの標本について F 検定ツールを使用することができます。このツールを使用すると、基となる分布で分散が等しくないという対立仮説に対して、分散が等しい分布からこれら 2 つの標本が得られるという帰無仮説に対する検定の結果を求めることができます。

このツールは F 統計 (または F 比率) の f 値を計算します。f の値が 1 に近い場合は、基になる母集団の分散が等しいことを示します。出力テーブルでは、f < 1 の場合、"P(F <= f) 片側" で、母集団の分散が等しいときに f より小さい F 統計の値が測定される確率が求められ、"F 境界値 片側" で、選択した基準値のレベル Alpha に対して 1 未満の境界値が求められます。f > 1 の場合は、"P(F <= f) 片側" で、母集団の分散が等しいときに f より大きい F 統計の値が測定される確率が求められ、"F 境界値 片側" で、選択したレベル Alpha に対して 1 を超える境界値が求められます。

フーリエ解析分析ツールは、データを変換する高速フーリエ変換 (FFT) を使って線形システムの解を求め、周期データを分析します。この分析ツールは、変換したデータを元のデータに戻す逆変換もサポートしています。

フーリエ解析の入力範囲と出力範囲

ヒストグラム分析ツールは、対象となるデータおよびデータ区間のセル範囲の個別頻度および累積頻度を計算します。この分析ツールを使って、データ グループに含まれる特定の値の出現頻度を求めます。

たとえば、20 人の学生のクラスで、テストの点数をアルファベットでランク分けした分布を求めることができます。このとき、ヒストグラム テーブルには、各ランクの境界値と、それぞれのランクに属する点数の頻度が表示されます。最も出現頻度の高い点数がデータのモード (最頻値) です。

ヒント: Excel 2016 で、ヒストグラムまたはパレート図を作成できるようになりました。

移動平均分析ツールは、過去の一定期間の変数の平均値に基づき、将来の期間の値を予測します。移動平均を使うと、過去のデータを平均するだけではわからない傾向についての情報が得られます。売り上げや在庫などの傾向を予測するには、この分析ツールを使用します。予測値は、次の数式を基に計算されます。

移動平均を算出する数式

ここで

  • N は、移動平均の計算に使う過去の観測値の個数です。

  • A j は、j 回目の観測値です。

  • F j は、j 回目の予測値です。

乱数発生分析ツールは、複数の分布の 1 つを基に発生させた、独立した乱数を一定の範囲に入力します。一定の確率分布を使って母集団の対象を特徴付けるには、この分析ツールを使います。たとえば、個人の身長の母集団を特徴付けるには正規分布を使います。また、2 とおりの結果しか得られないコイン投げなどの結果を特徴付けるにはベルヌーイ分布を使います。

順位と百分位数分析ツールは、対象となるデータ グループに含まれる各値に対して、その順位と百分位を含む出力テーブルを作成します。データの中での各値の相対的な位置を分析できます。このツールは RANK.EQ ワークシート関数と PERCENTRANK.INC ワークシート関数を使用します。同じ値を考慮に入れる場合は、RANK.EQ 関数を使用するか (同じ値は同じ順位として扱われる)、RANK.AVG 関数を使用します (同じ値については順位の平均を返す)。

回帰分析ツールは、線形回帰分析を行います。最小二乗法を使って、観測値のデータに最適な直線が当てはめられます。このツールを使って、複数の独立変数が 1 つまたは複数の従属変数に与える影響を分析することができます。たとえば、スポーツ選手の年齢、身長、体重などの要素が成績に与える影響を分析できます。成績データに基づいて、これらの要素それぞれが成績に影響した比率を求めることや、回帰分析の結果を使って、新人スポーツ選手の成績を予測することもできます。

回帰分析ツールは LINEST ワークシート関数を使用します。

サンプリング分析ツールは、入力範囲のデータを母集団と見なし、母集団から標本を抽出します。母集団の規模が大きすぎて統計処理やグラフ化が困難な場合は、母集団全体ではなく標本を対象に分析すると便利です。また、入力データにある種の周期性が認められる場合は、周期の特定部分から一定数の標本を抽出することもできます。たとえば、入力範囲に四半期ごとの売上高が入力されている場合、周期を 4 に設定すると、同じ四半期の売上高だけを出力テーブルに抽出できます。

2 標本による t 検定分析ツールは、各標本の基になる母集団の平均の等しさを検定します。母集団の分散が等しいという仮定、母集団の分散が等しくないという仮定、および 2 つの標本が同じ対象物についての処理の前と後の測定を表すという仮定、という 3 つの異なる仮定に 3 つのツールを使用します。

以下の 3 つのツールすべてにおいて、t 統計値 t が計算されて出力テーブルに "t Stat" として示されます。データに応じてこの t という値は負の値にも正の値にもなります。基になる母集団の平均値が等しいとする仮定では、t < 0 の場合、"P(T <= t) 片側" で、t より小さい t 統計の値が測定される確率が求められます。t >=0 の場合は、"P(T <= t) 片側" で、t より大きい t 統計の値が測定される確率が求められます。"t 境界値 片側" で、"t 境界値 片側" より大きいか等しい t 統計の値が測定される確率が Alpha になるような区分値が求められます。

"P(T <= t) 両側" で、絶対値が t よりも大きい t 統計の値が測定される確率が求められます。"P 境界値 両側" で、絶対値が "P 境界値 両側" より大きい t 統計の値が測定される確率が Alpha になるような区分値が求められます。

t 検定: 一対の標本による平均の検定

1 つの標本グループをある実験の前後で 2 度検定する場合のように、2 つの観測値に自然な対の関係がある場合は、この形式の t 検定を使います。この分析ツールとその数式は、一対の標本を使ったスチューデントの t 検定を行い、処理の前に行われた測定と処理の後に行われた測定が、母集団の平均値が等しい分布から行われたと見なせるかどうかを調べます。この形式の t 検定では、2 つの母集団の分散が等しいことを前提としません。

注: この分析ツールを使って出力する結果には、次の数式で求められる、プールされた分散 (結果に関するデータの分散がプールされた量) が現れることもあります。

プールされた分散を算出する数式

t 検定: 等分散を仮定した 2 標本による検定

2 つの標本を使ったスチューデントの t 検定を行います。この形式の t 検定では、2 つのデータ グループが、分散が等しい分布から抽出されたと仮定するため、 等分散 t 検定とも呼ばれます。2 つの標本が平均値の等しい母集団の分布から抽出されたと見なせるかどうかを調べるためにこの t 検定を使います。

t 検定: 分散が等しくないと仮定した 2 標本による検定

2 つの標本を使ったスチューデントの t 検定を行います。この形式の t 検定では、2 つのデータ グループが、分散が等しくない分布から抽出されたと仮定するため、異分散 t 検定とも呼ばれます。等分散の場合と同じように、この t 検定は、2 つの標本が平均値の等しい母集団の分布から抽出されたと見なせるかどうかを調べるために使用することができます。2 つの標本に他とは明らかに異なる対象物がある場合は、こちらの検定方法を使います。単一の一連の対象物と各対象物の処理の前と後の測定を表す 2 つの標本がある場合は、次の例で説明する一対の標本による平均の検定を使います。

統計定数 t を決めるには、次の数式を使います。

統計定数 t を算出する数式

自由度 df を計算するには、次の数式を使用します。通常は計算結果が整数ではないため、t テーブルからの境界値を求める際に、df の値が最も近い整数に四捨五入されます。Excel のワークシート関数 T.TEST は、整数以外の df 値で T.TEST の値を計算できるため、計算された df 値が四捨五入されずそのまま使われます。自由度を決める方法のこの違いのために、異分散における T.TEST とこの t 検定ツールの結果は異なります。

自由度を概算する数式

z 検定: 2 標本による平均の検定分析ツールは、既知の分散を使って、2 つの標本を対象に平均値の z 検定を行います。この分析ツールを使って、片面または両面の対立仮説いずれかに対して 2 つの母集団の平均値の間に差がないという帰無仮設を検定します。分散が未知の場合は、代わりに Z.TEST ワークシート関数を使う必要があります。

z 検定分析ツールを使う場合は、出力を詳しく調べる必要があります。"P(Z <= z) 片側" は実際には P(Z >= ABS(z)) を表し、母集団の平均値に差がない場合、z 値の確率は測定される z 値と同じ方向に 0 から遠い値になります。"P(Z <= z) 両側" は実際には P(Z >= ABS(z) or Z <= -ABS(z)) を表し、母集団の平均値に差がない場合、z 値の確率は測定される z 値のいずれかの方向に 0 から遠い値になります。両側の結果は、片側のちょうど 2 倍の値になります。z 検定分析ツールは、2 つの母集団の平均値の差が 0 以外の特定の値であるという仮説が帰無仮説となる場合に使用することもできます。たとえば、z 検定を行うと、2 種類の車の性能の差異を検定できます。

補足説明

Excel Tech Community では、いつでも専門家に質問できます。Microsoft コミュニティでは、サポートを受けられます。また、Excel User Voice では、新機能についての提案や改善案を送信することができます。

関連項目

Excel 2016 でヒストグラムを作成する

Excel 2016 でパレート図を作成する

分析ツールとソルバー アドインのインストールおよびアクティブ化のビデオを見る

エンジニアリング関数 (リファレンス)

統計関数 (リファレンス)

Excel の数式の概要

壊れた数式のエラーを回避する方法

数式のエラーを見つけて修正する

Excel のキーボード ショートカットおよびファンクション キー

Excel 関数 (アルファベット順)

Excel 関数 (機能別)

スキルを磨く
トレーニングの探索
新機能を最初に入手
Office Insider に参加する

この情報は役に立ちましたか?

ご意見をいただきありがとうございます。

フィードバックをお寄せいただき、ありがとうございます。Office サポートの担当者におつなぎいたします。

×