Ligninger til beregning af tendenslinjer

Lineær

Beregner de mindste kvadrater, der passer til en linje repræsenteret ved følgende ligning:

Ligning

hvor m er hældningen, og b er skæringen.

Polynomisk

Beregner mindste kvadrater for en gruppe punkter ved hjælp af følgende ligning:

Ligning

hvor b og Variabel er konstanter.

Logaritmisk

Beregner mindste kvadrater for en gruppe punkter ved hjælp af følgende ligning:

Ligning

hvor c og b er konstanter, og ln er den naturlige logaritmefunktion.

Eksponentiel

Beregner mindste kvadrater for en gruppe punkter ved hjælp af følgende ligning:

Ligning

hvor c og b er konstanter, og e er logaritmens grundtal.

Potens

Beregner mindste kvadrater for en gruppe punkter ved hjælp af følgende ligning:

Ligning

hvor c og b er konstanter.

R-kvadreret værdi

Ligning

Bemærk: Den R-kvadrerede værdi, du kan få vist med en tendenslinje, er ikke en justeret R-kvadreret værdi. Til logaritmiske, potens- og eksponentielle tendenslinjer benytter Microsoft Graph en transformeret regressionsmodel.

Bevægeligt gennemsnit

Ligning

Bemærk: Antallet af punkter i en bevægelig gennemsnitstendenslinje er lig med det samlede antal punkter i en serie minus det antal, som du angiver for perioden.

Del Facebook Facebook Twitter Twitter Mail Mail

Var disse oplysninger nyttige?

Fantastisk! Har du mere feedback?

Hvordan kan vi forbedre det?

Tak for din feedback!

×